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Definition An element of a ring is called clean if it can
be expressed as a sum of an idempotent and a unit in the
ring. A ring is called clean if each of its elements is clean.

e Clean Group Algebras

Observation Suppose K H is clean for every finitely gen-
erated subgroup H of a group G. Then KG is clean.

Observation If G is a locally finite group, then KG is

clean.



— Notation

AG)={z e G| [G: Cq(x)] < oo}

AT(G) = {z € A(G) | o(z) < o}
}:{x€G|[G:Cg(az)] < oo and o(x) <

NG)={zecG|[G: Cq(x)] =11}

(Recall [G : H] = I.f. means [K : KN H] < oo

for all finitely generated subgroups K of G.)

AT(G) = {xz € A(GQ) | o(z) < oo}
For any group G and any element }_ agg in

geG
KG,
b S
< ) 0499) = 2 Oégg_l
geG geG

Doo : Infinite Dihedral group, that is, the group
generated by two elements a and b where a is of
infinite order and b2 = 1, ab = ba 1.

For any ring R,
U(R) : Group of all units in R.



Definition A group G is called polycyclic it G has a finite

subnormal series
())=Gyg<xG1<4---1Gp =G (1)

such that each quotient G;1.1/G; is cyclic. If G;11/G; is
either cyclic or finite then GG is called polycyclic-by-finite.

Definition A group G is called nilpotent if G has a cen-
tral series, that is, a normal series

(1)=Gp<G1<--<Gn=G

such that each quotient G;1.1/G; is contained in the
center of G/G; for all i.



Proposition Let K be a field and G be a polycyclic-by-
finite group. Then K G is clean if and only if GG is finite.
In particular, for any field K, the group algebra KD«
of the infinite dihedral group, Doo, is not clean.

Proposition Let GG be a finitely generated solvable group
such that the group algebra KG is clean. Then G is
finite.

Proof Proof by induction on the solvability length of GG.

Corollary Let GG be a group with a torsion F'C' subgroup.
Suppose H is an F'C' normal subgroup of G such that

I is finitely generated solvable. If K G is clean then G

is locally finite.

Theorem Let (G be a nilpotent or FC or locally FC group.
Then KG is clean if and only if GG is locally finite.



Proposition Let G be a residually finite p-group and K
be a field of characteristic p > 0. Then KG is clean if
and only if it is local and hence G is torsion. (Recall a
group G is called residually finite if for every g 21 in G
there exists a normal subgroup N of G such that g ¢ N
and % is finite.)

Lemma Let G be a residually finite p-group and K be
a field of characteristic p > 0. Then KG has no non
trivial idempotents.

Example Let G be an infinite cyclic group. Since G is a
free group, it is residually a finite p-group for all primes p.
However, K G is not clean. Note that, in this example,
for every non trivial subgroup H of G, K[%] is clean but
K H is not clean.

Proposition Let K be a prime group algebra in which
all idempotents are central. If KG is clean then KG is
local.

Corollary Let KG be a prime group algebra such that
supporting group of all idempotents in KG is finite. If
K G is clean then G is torsion.



e Clean elements in K D

— Doo @ Infinite Dihedral group, that is, the group
generated by two elements a and b where a is of
infinite order and b% = 1, ab = ba~ 1.

— A : (a), infinite cyclic group generated by a.

— For any group G and any element ) agg in

geG
KG,

( > 0499) =53 agg_l

geG geG



e Clean elements in K D

— Some remarks

* For any unit a + 8b in KDoo, a® — B8* €
K\ {0}

x For any idempotent a+8b in K Do, at+a™ =
1 and ™ = BS*.

+ Any idempotent e in K Do has the form 271+
a1 + Bb where oy = —aJ and ajo] — BB*
is a nonzero element of K.

x If char(K) = 2, then K D has no nontriv-
lal idempotents and hence any element « in
K Doo (char(K) = 2) is clean if and only if
either it is a unit or &« — 1 is a unit.



e Clean elements in K D

Theorem Let K be a field of characteristic not equal to
2andlet o € KA C KDxc.

1. If o = a+ 3, where 8 = —8* and a € K then «
is clean in K Do if and only if a # 0, 1.

2. If @« = o, then « is clean in KDy if and only if
a € K.

Remark. Same argument can be used if K is replaced
with a commutative domain in which 2 is invertible.

Remark. It can be similarly proved that

1. If 0 # a = o™ € KA then a1 + b) is clean if and
only if a € K.

2. If o = —a € KA then (1 + b) is never clean.



e Clean elements in Polynomial Rings

Known R[x] is not clean. (Infact, € R][x] is not
clean.)

Observation If R is reduced ring then clean elements in
R[x] are in R.

Proposition CI(R[X]) = CI(R) if and only if R is
reduced where CI(R) denotes the set of clean elements
in R .

Proof If a € R is a nilpotent element, then u = 1+ ax
is invertible in R[x], so CI(R[X]) # CI(R) in this case.
If R is reduced then U(R[x]) = U(R) and E(R[x]) =
E(R). Thus also CI(R[x]) = CI(R).



e Idemptents in Polynomial Rings and other ring
extensions

For a unital ring R,
E(R) : Set of all idempotents in R.
J(R) : Jacobson radical of R.

B(R) : Prime radical of R.



Lemma Let R be a ring and e(x) = >_%°, e;x' € R[[z]]
be an idempotent. If ege; = e;eq, for every ¢ > 1,
then e(x) = eg. In particular, if R is abelian, then
E(R[[z]]) = E(R][z]) = E(R).

Proposition Let S), denote one of the following rings
R|z1,...,zn], R[[z1,--.,2zn]] and R[a:lil, xzil, )
If e i1s a central idempotent of Sy, then e € R.

Corollary (Bass) Let K be a commutative ring and G
an abelian group with the torsion part H. Then any
idempotent of KG belongs to K H.



Theorem For a ring R, the following conditions are equiv-
alent

1. R is abelian.

2. ldempotents of R commute with units of R.

3. B(R[[]]) = E(R).

4. E(R[x,z~1]) = E(R).

5. B(R[z]) = E(R).

6. There exists n > 1 such that R[x] does not contain
idempotents which are polynomials of degree n.



Remark Each of the statements in the above proposition

is equivalent to the statement
The rings R[x], R[[z]], R[x, 1] are all abelian.

Corollary Let S denote one of the rings R[x1,...,xn],
R[a;icl, xécl, ..,z R[[x1,...,zn]]. Then R is is
abelian if and only if S is abelian if and only if E(S) =
E(R).



Proposition Let M be an additive monoid with neutral
element 0 and suppose R = @,,,c s 2m 1s an M-graded
ring. Then

1. If Rg is abelian and E(R) = E(Rgp), then R is an
abelian ring.

2. Suppose M = 7Z. Then R is abelian if and only if
Ry is abelian and E(R) = E(Ryp).

Remark The analogue of the statement ‘the polynomial
ring R[x] is abelian if and only if R is abelian’ does not
hold for Z-graded rings. Indeed, if K is a field and
e = (1,0) € K x K = Ry then Rp is commutative
but the idempotent e is not central in R = Rg|x; o],
where o is the automorphism of Ry = K X K switching
components.



o [ 1+ ? x+ 3
Example Let R = M»>(Z4). E = < 3y 3.2 )

E is an idempotent in R[z].

E is conjuage to the idempotent (1) 8 in K. Indeed,
10 1 x
_ p—1 _
E=P <00>PwhereP_<x 1—|—:1:2>'
Remark Note that if e(z) = Y1 ge;x’ € R[z] is an

idempotent then e(x) = eg+b where eq is an idempotent
in R.



Proposition Let e, b, u be elements in a ring R such that

e? = e and u = 2e — 1. Then the following conditions

are equivalent.
1. e+ b is idempotent.
2. be+eb+ b2 =hb.
3. (L+bu)e=(e+b)(1+bu).
Moreover, if one of the equivalent statements holds
then

4. bu + ub = —2b2.

5. b%u = ub® and (1 + bu)(1 + ub) = (1 + ub)(1 +
bu) =1 — b2

6. 1 4 bu is invertible iff 1 - ub is invertible iff 1 — b2
Is invertible.



7. (14 2ub)(1 4 2bu) = 1 and b°u = ub?.



Corollary Let e,b € R be such that e,e +b € E(R).
If 1 — b2 is invertible, then e and e + b are conjugate.
In particular this holds when either b is nilpotent or b €

J(R) - the Jacobson radical of R.

Remark It is possible for two idempotents to be conju-
gates without 1 — b2 being invertible.

Example Let R = My(Z4). e = (1) 8) b =

2 3 2 3
T T+ (142 z+2
( 3z 3z? ) Then e +b = ( 3z 322 )

10 >
00 ) Here 1—b¢ = diag(1
322, 1 — 3z2) which is not invertible.

which is a conjugate of



Remark Let e,b € R besuchthate, e/ = e+b € E(R).
Let u = 2e — 1.

1. If k € N is odd, then (eb® 4 ebFt1)e = 0.

2. If k € Nis odd, then e +eb+eb? +--- +ebFLis
an idempotent.

3. If b¥ =0, then e+ eb+eb?+ - - - +ebF~1 is always
an idempotent.

4. e — (14 2ub)b is an idempotent and we have (1 +
ub)e = (e — (1 4 2ub)b)(1 + ub).

5. e + 2b(1 + ub) is an idempotent and we have (e +
b)(1 + ub) = (1 + ub)(e + 2b(1 + ub)).

6. If be = eb, then b = b3. In particular, b2 is an
idempotent.



Theorem Any idempotent f of R[[x]] is conjugate to
its constant term. Thus, in particular, any idempotent of
R[[x1,...,xn]] is conjugate to an idempotent of R.

Corollary Let R be a ring. Then

1. Any idempotent of R[x]/(x™) is conjugated to an
idempotent of R.

2. Any idempotent of the upper triangular matrix ring
An(R) of n X n matrices over R is conjugated to a
diagonal idempotent matrix.

3. If S'is another ring and R Mg is an (R, S)-bimodule,
R M) .

then any idempotent of the ring 1T" = 0 5|’

conjugate to an idempotent of R G S.



Corollary Let R be any ring and e(x) = e+ cx™ € R|z]
be an idempotent, where e,c € R and n > 1. Then
e(x) is conjugate in R[z] to e = e® € R. In particular,
every idempotent of R[x] having degree one is conjugate
to an idempotent of R.

Proof Note that e(x) is an idempotent implies e is an
idempotent and b = cz™ a nilpotent element.

Question What can we say about polynomials of the type
e + bz 4 cx™ € R[x] (m # n)?

Answer In general, No.



R
R)

duced, equivalently, the set of all nilpotent elements of
R coincides with the prime radical B(R) of R.

Definition A ring R is called 2-primal if 5 IS re-

Theorem Suppose R is a 2-primal ring. Then any idem-

potent of R[azlil, :vzil, ...,z aswell as of R[x1, ..., Zn)].

Is conjugated to an idempotent of R.



Definition An idempotent e of a ring R is called right
semicentral if er = ere, for all r € R. Left semicentral
idempotents are defined similarly.

Proposition Let T C S be a ring extension and e, f €

T be right semicentral idempotents of S. If e, f are
conjugate in S, then:

1. e=ef and f = fe;

2. e and f are conjugate in T'.

Theorem Let f be a right (resp. left) semicentral idem-
potent of R[x]. Then f is conjugate to the free term of

f.



Definition Two elements e, e’ of a ring R are called
equivalent if there exist invertible elements p, ¢ € R such

that e/ = peq.

Corollary Let e, €’ be two idempotents of a ring R. Then
e and e’ are equivalent if and only if they are conjugate.



Definition A ring R is called projective-free if every fi-
nitely generated projective R-module is free of unique

rank.

Remark A ring is projective-free precisely when it has
invariant basis number (IBN for short) and every idempo-

tent matrix is conjugate to a matrix of the form diag(1, . ..

0...,0).

Theorem

1. Let I denote an ideal of ring R contained in the
Jacobson radical J(R) of R. If R/I is projective-
free then R is also projective-free;

2. Every local ring R is projective-free.

Theorem (Cohn) Let R be any projective-free ring. Then
the power series ring R[[x]] is again projective-free.



Remark Suppose B is a ring such that the ring B[z] is
projective-free. Then, looking at My, (B)[z] as M, (B|x]),
every idempotent of R[x] is conjugate to an idempotent
of R = Mn(B).

Definition A ring R is called an ID ring if every idem-
potent matrix over R is conjugated to a diagonal matrix.

Theorem Let R be a 2-primal ring such R[x] is an I D-
ring. Then every idempotent e € My, (R)[x] is conju-
gated to a diagonal matrix of the form diag(eq, ..., en) €
Mn(R), where e;'s denote idempotents in R.

Remark Any commutative ring R such that R/B(R) is
a principal ideal ring fulfills the assumptions of the above
theorem.



Thant Dou



